Thursday, 13 November 2025

Exercise (3.1).21

Determine the last digit of $1! + 2! + 3! + 4! + ⋯ + 1000!$.


We first notice that, for some integer $k$,

$$1! + 2! + 3! + 4! + ⋯ + 1000! =  1! + 2! + 3! + 4! +10k $$

since all the terms including and after 5! include factors 5 and 2, and so are multiples of 10. 

Also

$$ 10k \equiv 0 \pmod {10} $$


This means

$$ \begin{align} 1! + 2! + 3! + 4! + ⋯ + 1000! & = 1! + 2! + 3! + 4! +10k  \\ \\ & \equiv  1! + 2! + 3! + 4! + (0) \pmod{10} \\ \\ & \equiv 33 \pmod{10} \\ \\ & \equiv 3 \pmod{10} \end{align}$$


So the last digit of $1! + 2! + 3! + 4! + ⋯ + 1000!$ is 3.