Thursday, 13 November 2025

Exercise (3.1).20

Show that $F_5 = 2^{2^5}$ + 1 (Fermat number with $n = 5$) is divisible by 641.


We have

$$ \begin{align} 2^{2^5} & = 2^{32} + 1= (2 ^ 8)^{4} + 1 \\ \\ & \equiv 256^4 + 1 \pmod{641}  \\ \\ & \equiv 640 + 1 \pmod{641} \\ \\ & \equiv (-1) + 1\pmod {641}  \\ \\ & \equiv 0 \pmod{641} \end{align} $$

We use the following result in the above

$ 2^8 = 256 \equiv 256 \pmod{641} $

$ 256^4 = 4294967296 \equiv 640 \pmod{641} $

This means $F_5$ is divisible by 641, and is not a prime.