Thursday, 13 November 2025

Exercise (3.1).22

Determine the last digit of the following numbers:

(a) $1961^{1961}$

(b) $1023^{1022}$

(c) $2019^{2019}$


(a) We have $1961 \equiv 1 \pmod{10}$ and so by Proposition (3.8)

$$ 1961^{1961} \equiv (1)^{1961} \equiv 1 \pmod {10} $$

So the last digit is 1.


(b) Noting that $1022 =2 \times 511$, we have

$$\begin{align} 1023^{1022} & \equiv (3)^{1022} \pmod {10} \\ \\ & \equiv  (3)^{2 \times 511} \pmod {10} \\ \\ & \equiv (3^2)^{511} \\ \\ & \equiv (-1)^511 \\ \\ & \equiv -1 \pmod {10} \\ \\ & \equiv 9 \pmod {10} \end{align}$$

So the last digit is 9.


(c) We have

$$\begin{align} 2019^{2019} & \equiv (-1)^2019 \pmod{10} \\ \\ & \equiv 9 \pmod{10} \end{align}$$

So the last digit is 9.