Sunday, 4 January 2026

Exercise (4.2).1

Determine the least non-negative residue $x$ of the following congruences:

(a) $10! ≡ x \pmod {11}$

(b) $10! + 10! ≡ x \pmod {11}$

(c) $10 (10!) + 8 (10!) ≡ x \pmod {11}$

(d) $5 (10!)^{101} + 3 (10!)^{100} ≡ x \pmod {11}$


We remind ourselves of Wilson's Theorem, 

$$ (n − 1)! \equiv −1 \pmod {n} \quad \iff \quad  n \text{ is prime} $$


(a) Since 11 is prime, Wilson's Theorem gives us 

$$ \begin{align} 10! & \equiv -1 \pmod {11} \\ \\ & \equiv 10 \pmod{11} \end{align}$$

The least non-negative residue is $x = 10$.


(b) Since 11 is prime, Wilson's Theorem gives us

$$ \begin{align} 10! & \equiv -1 \pmod {11} \\ \\  2 \times 10! & \equiv -2  \pmod{11} \\ \\ 10! + 10! & \equiv 9 \pmod {11} \end{align}$$

The least non-negative residue is $x = 9$.


(c) Since 11 is prime, Wilson's Theorem gives us

$$ \begin{align} 10! & \equiv -1 \pmod {11} \\ \\  18 \times 10! & \equiv -18  \pmod{11} \\ \\ 10(10!) + 8(10!) & \equiv 4 \pmod {11} \end{align}$$

The least non-negative residue is $x = 4$.


(d) Since 11 is prime, Wilson's Theorem gives us

$$ \begin{align} 10! & \equiv -1 \pmod {11} \\ \\  10!^{100} & \equiv 1  \pmod{11} \\ \\ 10!^{101} & \equiv -1  \pmod{11} \\ \\ 5(10!)^{101} + 3(10!)^{100} & \equiv 5(-1) + 3(1) \pmod{11} \\ \\ & \equiv -2 \pmod{11} \\ \\ \equiv 9 \end{align}$$

The least non-negative residue is $x = 9$.