Friday, 2 January 2026

Exercise (4.1).23

Let $p$ be prime. Prove that $p$ divides $(1− n) (1 + n + n^2 + n^3 + ⋯ + n^{p−2})$, provided $p$ does not divide $n$.


We first expand and simplify the expression

$$ \begin{align} (1− n) (1 + n + n^2 + n^3 + ⋯ + n^{p−2}) & = 1 + n + n^2 + n^3 + ⋯ + n^{p−2} \\  & - n - n^2 - n^3 - \ldots - n^{p-1} \\ \\  & = 1 - n^{p-1} \end{align} $$

Since $p$ does not divide $n$, we can use the FlT,

$$ n^{p-1} \equiv 1 \pmod p $$

And so

$$ \begin{align} (1− n) (1 + n + n^2 + n^3 + ⋯ + n^{p−2}) & \equiv 1 - n^{p-1} \pmod p \\ \\ & \equiv 1 - (1) \pmod p \\ \\ & \equiv 0 \pmod p \end{align} $$


This tells us that $p$ divides $(1− n) (1 + n + n^2 + n^3 + ⋯ + n^{p−2})$, if $p \not \mid n$.