Friday, 2 January 2026

Exercise (4.1).18

Prove that if $p \not \mid n$ then

$$ n^{k(p−1)} \equiv 1 \pmod {p}$$

where $p$ is prime and $k$ is a natural number.


Since $p \not \mid n$ we can use the FlT

$$ n^{p-1} \equiv 1 \pmod p $$

Using $a\equiv b \pmod n \implies a^k \equiv b^k \pmod n$,

$$ (n^{p-1})^k \equiv 1^k \pmod p $$

which simplifies to our desired conclusion.

$$ n^{k(p-1)} \equiv 1 \pmod p $$