Thursday, 1 January 2026

Exercise (4.1).17

Show that 

$$ \frac{12n^{13} + 23n}{35} $$

is an integer where $n$ is a natural number.


We follow the same strategy as the previous exercise.


We reformulate the requirement for the fraction to be an integer as a congruence.

$$ 12n^{13} + 23n \equiv 0 \pmod {35} $$

Following the hint we consider modulo 7 and modulo 5.


Using $n^7 \equiv n \pmod 7$, we have

$$ n^{13} \equiv n^7 \times n^6 \equiv n \times n^6 \times n^7 \equiv n \pmod 7 $$

And so

$$ 12n^{13} + 23n \equiv 12n + 23n \equiv 35n \equiv 0 \pmod {7} $$


Using $n^5 \equiv n \pmod 5$, we have

$$ n^{13} \equiv (n^5)^2 \times n^3 \equiv n^2 \times n^3 \equiv n^5 \equiv n \pmod 5 $$

And so

$$ 12n^{13} + 23n \equiv 12n + 23n \equiv 35n \equiv 0 \pmod {5} $$


We have

$$ 12n^{13} + 23n \equiv  0 \pmod {7} $$

$$ 12n^{13} + 23n \equiv  0 \pmod {5} $$

And since $\gcd(5,7)=1$, we conclude

$$ 12n^{13} + 23n \equiv  0 \pmod {35} $$

This is equivalent to the following fraction being an integer, for natural $n$

$$ \frac{12n^{13} + 23n}{35} $$