Friday, 21 November 2025

Exercise (3.3).13

Prove Proposition (3.21).


Proposition (3.21) states that $a \pmod n$ has an inverse if and only if $\gcd (a, n) = 1$.


($\implies$)

If $x$ is the multiplicative inverse of $a$ modulo $n$ then

$$ ax \equiv 1 \pmod n $$

By Proposition (3.16), for there to be a unique solution to this linear congruence, we must have $\gcd(n,a)=1$.


($\impliedby$)

If $\gcd(a,n)=1$ then by Bezout's Identity there exist integers $x,y$ such that

$$ ax + yn = 1 $$

That is

$$ ax = 1 - yn $$

Or equivalently

$$ ax \equiv 1 \pmod n $$


By showing the implications hold in both directions, we have proven Proposition (3.21).