Friday, 21 November 2025

Exercise (3.3).12

Show that if $a^{−1} ≡ b \pmod n$ then $b^{−1} ≡ a \pmod n$.


We're given $a^{−1} ≡ b \pmod n$ which means

$$ab \equiv 1 \pmod n$$

Since $ab = ba$, we have

$$ba \equiv 1 \pmod n$$

Which gives us that $a \pmod n$ is the multiplicative inverse of $b$ modulo $n$. That is, $b^{-1} \equiv a \pmod n$.