Saturday, 17 January 2026

Exercise (4.3).6

What is wrong with the following argument?

$10^5−1 \not \equiv 1 \pmod 5$ implies 5 is composite.


FlT says: 

$$ ( n \text{ prime } \land n \not \mid a ) \quad  \implies \quad a^{n-1} \equiv 1 \pmod n $$


The contrapositive says

$$ a^{n-1} \not \equiv 1 \pmod n \quad \implies \quad (n \text{ composite } \textcolor{red}{ \lor n \mid a} ) $$


So the given statement is incomplete, and should be:

$10^5−1 \not \equiv 1 \pmod 5$ implies 5 is composite or 5 divides 10.