Sunday, 4 January 2026

Exercise (4.2).7

Determine $61! \pmod {71}$.


We start with Wilson's Theorem

$$ \begin{align} 70! & \equiv -1 \pmod {71} \\ \\  70 \cdot 69 \cdot 68 \cdot 67 \cdot 66 \cdot 65 \cdot 64 \cdot 63 \cdot 62 \cdot 61! & \equiv -1 \cdot -2 \cdot -3 \cdot -4 \cdot -5 \cdot -6  \cdot -7  \cdot -8 \cdot -9 \cdot 61! \pmod {71} \\ \\ & \equiv  -2 \cdot 3 \cdot 4 \cdot 5 \cdot 6  \cdot 7  \cdot 8 \cdot 9 \cdot 61! \pmod {71} \\ \\ & \equiv  -2 \cdot 3 \cdot 4 \cdot 5 \cdot 6  \cdot 7  \cdot (1) \cdot 61! \pmod {71} \\ \\ & \equiv  -2  \cdot 4 \cdot (19)  \cdot 7 \cdot 61! \pmod {71} \\ \\ & \equiv  (-56) \cdot (19) \cdot 61! \pmod {71} \\ \\ & \equiv  (1) \cdot 61! \pmod {71} \\ \\ & \equiv -1 \pmod {71} \\ \\ & \equiv 70 \pmod{71} \end{align} $$

This tells us $61! \equiv 70 \pmod {71}$.