Tuesday, 6 January 2026

Exercise (4.2).15

Let $p$ be prime. Show that

$$ (p− 1)(p− 2) \ldots (p − n) \equiv (−1)^{n} \; n! \pmod p $$

where $ 1 ≤ n < p$.


We proceed as follows

$$ \begin{align} (p-1) \times (p-2) \times \ldots \times  (p-n) & \equiv \underbrace{(-1) \times (-2) \times \ldots (-n)}_{n \text{ multiplicands}} \pmod p \\ \\ & \equiv (-1)^n \times 1 \times 2 \ldots \times n \pmod p \\ \\  & \equiv (-1)^n \; n! \pmod p \end{align} $$