Monday, 5 January 2026

Exercise (4.2).13

Let $p$ be prime. Prove that

$$ (p− 2)! \equiv 1 \pmod p $$


We start with Wilson's Theorem

$$ (p-1)! \equiv -1 \pmod p $$

That is

$$ (p-1) \times (p-2)! \equiv -1 \pmod p $$

Now, $(p-1) \equiv -1 \pmod p$, so

$$ (-1) \times (p-2)! \equiv -1 \pmod p $$

Multiplying by (-1), gives us the desired result

$$ (p-2)! \equiv 1 \pmod p $$