Tuesday, 30 December 2025

Exercise (4.1).4

(i) Find $8^{21} \pmod {23}$.

(ii) Solve the equation $8x ≡ 7 \pmod {23}$.


(i) Since 23 is a prime, and does not divide 8, we can use the FlT.

$ 8^{22} \equiv 1 \pmod {23} $

$ 8^{21} \times 8 \equiv 1 \pmod {23} $

By inspection we can see that $8^{21} \equiv 3 \pmod {23}$ gives us $3 \times 8 \equiv 24 \equiv 1 \pmod {23}$.

And so $8^{21} \equiv 3 \pmod {23}$.


(ii) From above we have $ 8^{21} \times 8 \equiv 1 \pmod {23} $ and $8^{21} \equiv 3 \pmod {23}$, and so

$ 3 \times 8 \equiv 1 \pmod {23} $

$ 3 \times 8 \times 7 \equiv 7 \pmod {23} $

Which gives us $x \equiv 21 \pmod {23}$.