Wednesday, 31 December 2025

Exercise (4.1).11

(i) Let $p$ be prime and $p \not \mid n$. Prove that the solutions of $nx \equiv a \pmod p$ is

given by

$$ x \equiv n^{p−2}a \pmod p $$

(ii) Solve the linear congruence

$$ 10x \equiv 11 \pmod {17}$$


(i) Since $p$ is prime, and does not divide $n$, we can use FlT

$ n^{p-1} \equiv 1 \pmod p $

Multiplying both sides by $a$

$ n^{p-1}a \equiv a \pmod p $

That is

$ n ( n^{p-2}a) \equiv a \pmod p $

Comparing this to $nx \equiv a \pmod p$ tells us $x \equiv n^{p-2}a \pmod p$.


(ii) Using the result from (i) we have

$ x \equiv 10^{15} \times 11 \pmod {17} $

Using $10^5 \equiv 100000 \equiv 6 \pmod {17}$, we have

$ x \equiv ({10^ 5})^3 \times 11 \equiv 6^3 \times 11 \equiv 2376 \equiv 13  \pmod {17} $

That is,

$ x \equiv  13 \pmod {17} $