Monday, 29 December 2025

Exercise (4.1).1

Determine the least non-negative residue $x$ of the following congruences:

(a) $7^{101} ≡ x \pmod {11}$

(b) $2^{1976} ≡ x \pmod {13}$

(c) $5^{1961} ≡ x \pmod {7}$

(d) $3^{2013} ≡ x \pmod {23}$

(e) $26^{2013} ≡ x \pmod {23}$


We remind ourselves of Fermat's Little Theorem (FlT). For integer $a$ and prime $p$, where $p \not \mid a$, we have

$$ a^{p-1} \equiv 1 \pmod {p} $$


(a) Since 11 is prime, and doesn't divide 7, we can use the FlT.

$ 7^{10} \equiv 1 \pmod {11} $

$ (7^{10})^{10} \equiv 1^{10} \pmod {11}  $

$ 7^{100} \equiv 1 \pmod {11}  $

$ 7^{100} \times 7  \equiv 7 \pmod {11}  $

$ 7^{101}  \equiv 7 \pmod {11}  $


(b) Since 13 is prime, and doesn't divide 2. we can use the FlT.

$ 2^{12} \equiv 1 \pmod{13} $

$ (2^{12})^{164} \equiv 1 \pmod{13} $

$ 2^{1968} \times 2^8 \equiv 256 \equiv 9 \pmod{13} $

$ 2^{1976} \equiv  9 \pmod {13} $


(c) Since 7 is prime, and doesn't divide 5, we can use the FlT.

$ 5^{6} \equiv 1 \pmod 7 $

$ (5^{6})^{326} \equiv 1 \pmod 7 $

$ 5^{1956} \times 5^5 \equiv 3125 \equiv 3 \pmod 7 $

$ 5^{1961} \equiv 3 \pmod 7 $


(d) Since 23 is prime, and doesn't divide 3, we can use the FlT.

$ 3^{22} \equiv 1 \pmod {23} $

$ (3^{22})^{91} \equiv 1 \pmod {23} $

$ 3^{2002} \times 3^{11} \equiv 177147  \equiv 1 \pmod {23} $

$ 3^{2013} \equiv 1 \pmod {23} $


(d) We first note that

$ 26 \equiv 3 \pmod {23} $

$ 26^{2013} \equiv 3^{2013} \equiv 1 \pmod {23} $ using (d) above.