Tuesday, 2 December 2025

Exercise (3.5).12

Factorise the following integers using modular arithmetic:

(a) 2201 (b) 2189 (c) 9211


We will use the Factorisation Theorem (3.26). 

Let $a$ and $b$ be integers which satisfy the congruence $a^2 ≡ b^2 \pmod n$ and $a ≢ ±b \pmod n$. Then $\gcd (a− b, n)$ is a non-trivial factor of $n$.



(a) We start with $\lceil \sqrt{2201} \rceil = 47$.

The following table shows values $x$ from 47, $x^2-2201$, and the resulting factorisation.

xx^2-2201prime factors
4782^3
48103103
492002^3, 5^2
5029913, 23
514002^4, 5^2
52503503
536082^5, 19^1
547155, 11, 13
558242^3, 103

We pick out

$ 47^2 \equiv 2^3 \pmod {2201} $

$ 48^2 \equiv 103 \pmod {2201} $

$ 55^2 \equiv 2^3 \times 103 \pmod {2201} $

Multiplying gives

$ (47 \times 48 \times 55)^2 \equiv (2^3 \times 103)^2 \pmod {2201} $

$ (124080)^2 \equiv (824)^2 \pmod {2201} $

Unfortunately, $124080 \equiv 824 \pmod {2201}$, so we can't use the Factorisation Theorem.


Let's consider multiples of 2201, that is $2201k$.

kxx^2-2201kprime factors
14782^3
267873, 29
38212111^2
494322^5
5105202^2, 5
61151919
71252182, 109
8133813^4
9141722^3, 3^2
10149191191
111561255^3

We pick out

$ 47^2 \equiv 2^3 \pmod {2201} $

$ 133^2 \equiv 3^4 \pmod {2201} $

$ 141^2 \equiv 2^3 \times 3^2 \pmod {2201} $

Multiplying

$ (47 \times 133 \times 141)^2 \equiv (2^3 \times 3^3)^2 $

Here $ 881391 \not \equiv \pm 216 \pmod {2201}$ so we can use the Factorisation Theorem.

This means $\gcd(881391-216, 2201) = 31$ is a non-trivial factor of $n$. 

This gives us $2201 = 31 \times 71$.



(b) We start with $\lceil \sqrt{2189} \rceil = 47$

The following table shows values $x$ from 47, $x^2-2189$, and the resulting factorisation.

xx^2-2189prime factors
47202^2, 5
481155, 23
492122^2, 53
50311311
514122^2, 103
525155, 103
536202^2, 5, 31
54727727
558362^2, 11, 19
56947947
5710602^2, 5, 53
5811755^2, 47

We pick out

$ 47^2 \equiv 2^2 \times 5 \pmod {2189} $

$ 51^2 \equiv 2^2 \times 103 \pmod {2189} $

$ 52^2 \equiv5 \times 103 \pmod {2189} $

Multiplying

$ (47 \times 51 \times 52)^2 \equiv (2^2 \times 5 \times 103)^2 \pmod {2189} $

Unfortunately, $124644 \equiv 2060 \pmod {2189}$ so we can't use the Factorisation Theorem.

Let's consider multiples of 2189, that is $2189k$.

kxx^2-2189kprime factors
147202^2, 5
2671113, 37
382157157
494802^4, 5
5105802^4, 5

We pick out

$ 47^2 \equiv 2^2 \times 5 \pmod {2189} $

$ 105^2 \equiv 2^4 \times 5 \pmod{2189}  $

Multiplying

$ (47 \times 105)^2 \equiv (2^3 \times 5)^2 \pmod {2189} $

Here $4935 \not \equiv \pm 40 \pmod {2189}$ and so we can use the Factorisation Theorem.

This means $\gcd(4935-40, 2189)=11$ is a non-trivial factor of 2189.

This gives us $2189 = 11 \times 199$.


(c) We start with $\lceil \sqrt{9211} \rceil = 96$

The following table shows values $x$ from 47, $x^2-9211$, and the resulting factorisation.

xx^2-9211prime factors
9655
971982, 3^2, 11
983933, 131
995902, 5, 59
1007893, 263
1019902, 3^2, 5, 11

We pick out

$ 96^2 \equiv 5 \pmod {9211} $

$ 97^2 \equiv 2 \times 3^2 \times 11 \pmod {9211} $

$ 101^2 \equiv 2 \times 3^2 \times 5 \times 11 \pmod{9211} $

Multiplying

$ (96 \times 97 \times 101 )^2 \equiv (2 \times 3^2 \times 5 \times 11 )^2 \pmod {9211} $

Unfortunately, $940512 \equiv 990 \pmod {9211}$ so we can't use the Factorisation Theorem.

Let's consider multiples of 9211,  that is $9211k$

kxx^2-9211kprime factors
19655
2136742, 37
31672562^8
4192202^2, 5

We pick out

$ 167^2 \equiv 16^2 \pmod {9211} $

We check that $167 \not \equiv \pm 16 \pmod {9211}$, so we can use the Factorisation Theorem.

This means $\gcd(167-16,9211) = 151$ is a non-trivial factor of 9211.

This gives us $9211 = 151 \times 61$.