Friday, 28 November 2025

Exercise (3.4).6

A general wanted to know how many soldiers he had in his battalion. He placed them into rows as follows:

2 left over when placed in rows of 5.

4 left over when placed in rows of 6.

1 left over when placed in rows of 7.

7 left over when placed in rows of 11.

What is the minimum number of soldiers he must have in his battalion?


The problem can formulated as finding the least non-negative solution to the following simultaneous linear congruences.

$ x \equiv 2 \pmod 5 $

$ x \equiv 4 \pmod 6 $

$ x \equiv 1 \pmod 7 $

$ x \equiv 7 \pmod {11} $

The modulii 5, 6, 7 and 11 are pair-wise coprime, and so we can use the Chinese Remainer Theorem.

Formula (3.23) here is

$$ x = a_1 N_1 x_1 + a_2 N_2 x_2 + a_3 N_3 x_3  + a_4 N_4 x_4 = 2(6 \times 7 \times 11)x_1 + 4(5 \times 7 \times 11)x_2 + 1(5 \times 6 \times 11)x_3 + 7(5 \times 6 \times 7)x_4 $$

where $N_k x_k \equiv 1 \pmod {n_k}$, and so

$$ \begin{align} 462 x_1 & \equiv 1 \pmod 5 \\ \\ 2 x_1 & \equiv 1 \pmod 5 \\ \\ x_1 & \equiv 3 \pmod 5  \end{align}$$

and

$$ \begin{align} 385 x_2 & \equiv 1 \pmod 6 \\ \\ x_2  & \equiv 1 \pmod 6 \end{align}$$

also

$$ \begin{align} 330 x_3 & \equiv 1 \pmod 7 \\ \\ x_3 & \equiv 1 \pmod 7 \end{align}$$

and also

$$ \begin{align} 210 x_4 & \equiv 1 \pmod {11} \\ \\ x_4 & \equiv 1 \pmod {11} \end{align}$$

This gives

$$ x = a_1 N_1 x_1 + a_2 N_2 x_2 + a_3 N_3 x_3  + a_4 N_4 x_4 = 2(6 \times 7 \times 11)3 + 4(5 \times 7 \times 11)1 + 1(5 \times 6 \times 11)1 + 7(5 \times 6 \times 7)1 = 6112 $$

The general unique solution is 

$$ \begin{align} x & \equiv 6112 \pmod {5 \times 6 \times 7 \times 11} \\ \\ x & \equiv 1492 \pmod {2310} \end{align}$$

That is, for some integer $t$

$$ x = 1492 + 2310t$$

The least positive solution is $1492$.