Friday, 28 November 2025

Exercise (3.4).2

Solve the following simultaneous equations. Write down the general solution and the least positive integer which satisfies these equations:

(a) $2x ≡ 1 \pmod 3$, $5x ≡ 2 \pmod 7$

(b) $2x ≡ 1 \pmod {13}$, $3x ≡ 2 \pmod {19}$

(c) $3x ≡ 5 \pmod 7$, $5x ≡ 2 \pmod {11}$, $9x ≡ 1 \pmod {5}$

(d) $x ≡ 3 \pmod 7$, $x ≡ 9 \pmod {11}$


(a) We rewrite the equations to isolate the variable $x$

$ 2x  \equiv 1 \pmod 3 \iff 4x  \equiv 2 \pmod 3 \iff x  \equiv 2 \pmod 3 $

$ 5x  \equiv 2 \pmod 7 \iff 15x \equiv 6 \pmod 7 \iff x \equiv 6 \pmod 7$

The modulii 3 and 7 are indeed pair-wise coprime, so we can use the Chinese Remainder Theorem to solve

$x ≡ 2 \pmod 3 $

$x ≡ 6 \pmod 7$

Formula (3.23) here is

$$ x = a_1 N_1 x_1 + a_2 N_2 x_2 = 2(7)x_1 +  6(3)x_2$$

where $N_k x_k \equiv 1 \pmod {n_k}$, and so

$$ \begin{align} 7 x_1 & \equiv 1 \pmod 3 \\ \\  x_1 & \equiv 1 \pmod 3 \end{align}$$

and

$$ \begin{align} 3 x_2 & \equiv 1 \pmod 7 \\ \\ x_2 & \equiv 5 \pmod 7 \end{align}$$

which gives

$$ x = a_1 N_1 x_1 + a_2 N_2 x_2 = 2(7)1 +  6(3)5 = 104$$

The general unique solution is 

$$ \begin{align} x & \equiv 104 \pmod {3 \times 7} \\ \\ x & \equiv 20 \pmod {21} \end{align}$$

That is, for some integer $t$

$$ x = 20 + 21t$$

The least positive solution is $x=20$.


(b) We rewrite the equations to isolate the variable $x$

$ 2x \equiv 1 \pmod {13} \iff 14x \equiv 7 \pmod {13} \iff x \equiv 7 \pmod {13} $

$ 3x \equiv 2 \pmod {19} \iff 39x \equiv 26 \pmod {19} \iff x \equiv 7 \pmod {19} $

The modulii 13 and 19 are indeed pair-wise coprime, so we can use the Chinese Remainder Theorem to solve

$ x \equiv 7 \pmod {13} $

$ x \equiv 7 \pmod {19} $

Formula (3.23) here is

$$ x = a_1 N_1 x_1 + a_2 N_2 x_2 = 7(19)x_1 +  7(13)x_2$$

where $N_k x_k \equiv 1 \pmod {n_k}$, and so

$$ \begin{align} 19 x_1 & \equiv 1 \pmod {13} \\ \\  6 x_1 & \equiv 1 \pmod {13} \\ \\ x_1 & \equiv 11 \pmod {13} \end{align}$$

and

$$ \begin{align} 13 x_2 & \equiv 1 \pmod {19} \\ \\ x_2 & \equiv 3 \pmod {19} \end{align}$$

which gives

$$ x = a_1 N_1 x_1 + a_2 N_2 x_2 = 7(19)11 +  7(13)3 = 1736$$

The general solution is

$$ \begin{align} x & \equiv 1736 \pmod {13 \times 19} \\ \\ x & \equiv 7 \pmod {247} \end{align}$$

That is, for some integer $t$

$$ x = 7 + 247t$$

The least positive solution is $x=7$.


(c) We rewrite the equations to isolate the variable $x$

$ 3x \equiv 5 \pmod 7 \iff 15x \equiv 25 \pmod 7 \iff x \equiv 4 \pmod 7 $

$ 5x \equiv 2 \pmod {11} \iff  45x \equiv 18 \pmod {11} \iff x \equiv 7 \pmod {11} $

$ 9x \equiv 1 \pmod {5} \iff 4x \equiv 1 \pmod 5 \iff 16x \equiv 4 \pmod 5 \iff x \equiv 4 \pmod 5$

The modulii 7, 11 and 5 are indeed pair-wise coprime, so we can use the Chinese Remainder Theorem to solve.

$ x \equiv 4 \pmod 7 $

$ x \equiv 7 \pmod {11} $

$  x \equiv 4 \pmod 5$

Formula (3.23) here is

$$ x = a_1 N_1 x_1 + a_2 N_2 x_2 + a_3 N_3 x_3 = 4(11 \times 5)x_1 + 7(7 \times 5)x_2 + 4(7 \times 11)x_3$$

where $N_k x_k \equiv 1 \pmod {n_k}$, and so

$$ \begin{align} 55 x_1 & \equiv 1 \pmod 7 \\ \\  6 x_1 & \equiv 1 \pmod  7 \\ \\ x_1 & \equiv 6 \pmod 7 \end{align}$$

and

$$ \begin{align} 35 x_2 & \equiv 1 \pmod {11} \\ \\  2 x_2 & \equiv 1 \pmod {11} \\ \\ x_2 & \equiv 6 \pmod {11}  \end{align}$$

also 

$$ \begin{align} 77 x_3 & \equiv 1 \pmod 5\\ \\  2 x_3 & \equiv 1 \pmod 5 \\ \\ x_3 & \equiv 3 \pmod 5  \end{align}$$

which gives

$$ x = a_1 N_1 x_1 + a_2 N_2 x_2 + a_3 N_3 x_3 = 4(11 \times 5)6 + 7(7 \times 5)6 + 4(7 \times 11)3 = 3714 $$

The general solution is

$$ \begin{align} x & \equiv 3714 \pmod {7 \times 11 \times 5} \\ \\ x & \equiv 249 \pmod {385} \end{align}$$

That is, for some integer $t$

$$ x = 249 + 385t$$

The least positive solution is $x=249$.


(d) The modulii 7 and 11 are pair-wise coprime, so we can use the Chinese Remainder Theorem to solve

$x ≡ 3 \pmod 7$

$x ≡ 9 \pmod {11}$

Formula (3.23) here is

$$ x = a_1 N_1 x_1 + a_2 N_2 x_2 = 3(11)x_1 +  9(7)x_2$$

where $N_k x_k \equiv 1 \pmod {n_k}$, and so

$$ \begin{align} 11 x_1 & \equiv 1 \pmod {7} \\ \\  4 x_1 & \equiv 1 \pmod 7 \\ \\ x_1 & \equiv 2 \pmod 7 \end{align}$$

and

$$ \begin{align} 7 x_2 & \equiv 1 \pmod {11} \\ \\ x_2 & \equiv 8 \pmod {11} \end{align}$$

which gives

$$ x = a_1 N_1 x_1 + a_2 N_2 x_2 = 3(11)2 +  9(7)8 = 570$$

The general solution is

$$ \begin{align} x & \equiv 570 \pmod {7 \times 11} \\ \\ x & \equiv 31 \pmod {77} \end{align}$$

That is, for some integer $t$

$$ x = 31 + 77t$$

The least positive solution is $x=31$.