Monday, 17 November 2025

Exercise (3.2).8

Find the least non-negative residue $x$ modulo $n$ in the following cases:

(a) $x^2 ≡ 25 \pmod 3$

(b) $x^2 ≡ 100 \pmod {11}$

Also determine the general solution in each case.


(a) We have

$$\begin{align} x^2 & \equiv 25 \pmod 3 \\ \\ x^2 - 25 & \equiv 0 \pmod 3 \\ \\  (x-5) (x+5) & \equiv 0 \pmod 3 \end{align}$$

Proposition 3.14(b) gives us $(x-5) \equiv 0 \pmod 3$ or $(x+5) \equiv 0 \pmod 3$. Let's consider each case in turn.

Case 1:  $(x-5) \equiv 0 \pmod 3$ gives us $x = 5 +3t$ for some integer $t$.

Case 3:  $(x+5) \equiv 0 \pmod 3$ is $x \equiv 1 \pmod 3$, which gives us $x = 1 +3t$ for some integer $t$.

The least non-negative residue is 1 from the second case with $t=0$.

The general solution is $x = 3t + 3 \pm 2$.


(b) This time we use $10^2 \equiv (-1)^2 \pmod 11$,

$$\begin{align} x^2 & \equiv 100 \pmod {11} \\ \\ x^2 & \equiv 10^2 \pmod {11} \\ \\ & \equiv 1\pmod {11} \\ \\ x^2 -1 & \equiv 0 \pmod {11} \\ \\. (x+1) \times (x-1) & \equiv 0 \pmod {11}\end{align}$$

Proposition 3.14(b) gives us $(x-1) \equiv 0 \pmod {11}$ or $(x+1) \equiv 0 \pmod{11}$. Let's consider each case in turn.

Case 1: $(x-1) \equiv 0 \pmod {11}$ gives us $x = 1 + 11t$ for some integer $t$.

Case 1: $(x+1) \equiv 0 \pmod {11}$  is $x \equiv 10 \pmod {11}$, which gives us $x = 10 + 11t$ for some integer $t$.

The least non-negative residue is 1 from the first case with $t=0$.

The general solution is $x = 11t + \frac{11}{2} \pm \frac{9}{2}$.