Tuesday, 11 November 2025

Exercise (3.1).5

Find $x$ where $x$ is the least non-negative residue modulo n of the following:

(a) $2789 + 2788 ≡ x \pmod{2787}$

(b) $2789 × 2788 ≡ x \pmod{2787}$

(c) $5201 + 5211 ≡ x \pmod{5200}$

(d) $5201 × 5211 ≡ x \pmod{5200}$

(e) $5198 + 5188 ≡ x \pmod{5200}$

(f) $5198 × 5180 ≡ x \pmod{5200}$


For these exercises we use Proposition (3.6)

If $a ≡ b \pmod{n}$ and $c ≡ d \pmod{n}$ then 

(i) $a + c ≡ (b + d) \pmod{n}$ 

(ii) $ac ≡ bd \pmod{n}$


(a) $2789 + 2788 \equiv 2 \pmod{2787} + 1 \pmod{2787} \equiv 3 \pmod{2787}$

So $x=3$.


(b) $2789 \times  2788 \equiv 2 \pmod{2787} \times 1 \pmod{2787} \equiv 2 \pmod{2787}$

So $x=2$.


(c) $ 5201 + 5211 \equiv 1 \pmod{5200} + 11 \pmod{5200} \equiv 12 \pmod{5200}$

So $x=12$.


(d) $ 5201 \times 5211 \equiv 1 \pmod{5200} \times 11 \pmod{5200} \equiv 11 \pmod{5200}$

So $x=11$.


(e) $5198 + 5188 \equiv  (-2) \pmod{5200} + (-12) \pmod{5200} \equiv (5200-24) \pmod{5200} \equiv 5186 \pmod{5200}$

So $x=5186$.


(f) $5198 \times 5180 \equiv  (-2) \pmod{5200} \times (-20) \pmod{5200} \equiv 40 \pmod{5200}$

So $x=40$.