Monday, 17 November 2025

Exercise (3.1).32

This is a test for divisibility by 11. Let a natural number $N$ be written in its decimal format as:

$$N = a_n \; a_{n−1} \; a_{n−2} \; \ldots \; a_2 \; a_1 \;  a_0$$

where $a$’s are

the digits of the number.

Let

$$T = a_0 − a_1 + a_2 − a_3 + \ldots + (−1)^n a_n$$

Show that 11 divides $N$ $\iff$ 11 divides $T$.


Let's write $N$ as the sum

$$ N =  10^n a_n + 10^{n-1}a_{n-1} + 10^{n-2}a_{n-2} + \ldots  10^2a_2 + 10^1a_1 + 10^0a_0$$

Since $10 \equiv -1 \pmod {11}$, we can write

$$\begin{align} N & \equiv (-1)^n a_n + (-1)^{n-1}a_{n-1} + (-1)^{n-2}a_{n-2} + \ldots  (-1)^2a_2 + (-1)^1a_1 + (-1)^0a_0 \pmod {11} \\ \\ & \equiv a_0 - a_1 + a_2 - a_3 + \ldots + (-1)^n a_n \\ \\  & \equiv T \pmod {11}\end{align}$$


($\implies$) If 11 divides $N$ then $N \equiv 0 \pmod{11}$. The above tells us $T \equiv 0 \pmod{11}$, and so 11 divides $T$.

($\impliedby$) If 11 divides $T$ then $T \equiv 0 \pmod{11}$. The above tells us $N \equiv 0 \pmod{11}$, and so 11 divides $N$.


And so we have shown 11 divides $N$ $\iff$ 11 divides $T$.