Wednesday, 12 November 2025

Exercise (3.1).17

Let $a$ be any integer. Show that the last digit of $a^3$ can be any digit from 0 to 9.


We use the Division Algorithm to write integer $a$ as $a = 10q + r$ where $0 \le r < 10$.


We have 

$$ \begin{align} a^3 & =  1000 q^3 + 300 q^2 r + 30 q r^2 + r^3 \\ \\ & \equiv 0 + 0 + 0 + r^3 \pmod {10} \\ \\ & \equiv r^3 \end{align}$$

We consider each case for $r$:

rr^3r^3 mod 10
000
111
288
3277
4644
51255
62166
73433
85122
97299

This tells us the last digit of $a^3$ can be any digit from 0 to 9.