Wednesday, 12 November 2025

Exercise (3.1).12

(a) Show that a square number $a^2$ divided by 3 gives only remainders 0 or 1.

(b) Show that a square number $a^2$ divided by 4 gives only remainders 0 or 1.


(a) We start by noting that a number $a$ is congruent to 0, 1 or 2 modulo 3.

Using Proposition (3.8) we have, for each of these cases

$$ a \equiv 0 \pmod 3 \implies a^2 \equiv 0^2 \equiv 0 \pmod 3 $$

$$ a \equiv 1 \pmod 3 \implies a^2 \equiv 1^2 \equiv 1 \pmod 3 $$

$$ a \equiv 2 \pmod 3 \implies a^2 \equiv 2^2 \equiv 1 \pmod 3 $$

And so $a^2$ divided by 3 only gives remainders 0 or 1.


(b) We start by noting that a number $a$ is congruent to 0, 1, 2 or 3 modulo 4.

Using Proposition (3.8) we have, for each of these cases

$$ a \equiv 0 \pmod 4 \implies a^2 \equiv 0^2 \equiv 0 \pmod 4 $$

$$ a \equiv 1 \pmod 4 \implies a^2 \equiv 1^2 \equiv 1 \pmod 4 $$

$$ a \equiv 2 \pmod 4 \implies a^2 \equiv 2^2 \equiv 0 \pmod 4 $$

$$ a \equiv 3 \pmod 4 \implies a^2 \equiv 3^2 \equiv 1 \pmod 4 $$

And so $a^2$ divided by 4 only gives remainders 0 or 1.