Wednesday, 12 November 2025

Exercise (3.1).10

Find the last two digits of $2014^{2014}$.

(This number has 6655 digits.)


The last two digits are the least non-negative residue modulo 100.

We have $2014 \equiv 14 \pmod{100}$, and $14^2 = 196 \equiv -4 \pmod{100}$.

By Proposition (3.8) we have

$$ \begin{align} 2014^{2014} & \equiv (14)^{2014} \pmod{100} \\ \\ & \equiv (14)^{2 \times 19 \times 53} \pmod{100} \\ \\  & \equiv  (14^2)^{19 \times 53} \pmod{100} \\ \\ & \equiv (-4)^{19 \times 53} \pmod{100}  \end{align} $$

Now, $19 \times 53$ can't be decomposed further, so we'll resort to the division algorithm.

$$ 19 \times 53 = 1007 =  (10 \times 100) + 7$$

And so, 

$$ \begin{align} 2014^{2014} & \equiv (-4)^{(10 \times 100) + 7} \pmod{100}  \\ \\  & \equiv (-4)^{10 \times 100} \times (-4)^7 \pmod{100} \\ \\ & \equiv ((-4)^{10})^{100} \times (-4)^7 \pmod{100} \end{align} $$

It is now feasible to calculate

$$ (-4)^{10} \equiv -1048576  \equiv 24 \pmod {100} $$

$$ (-4)^7  \equiv -16384  \equiv 16 \pmod {100} $$

And so,

$$ \begin{align} 2014^{2014} & \equiv (24)^{100} \times 16 \pmod{100} \end{align} $$

We can repeat this process using $24^{100} =  (24^{10})^{10}  = (6^{10} \times 4^{10})^{10}  \equiv (76 \times  76)^{10} \equiv 76^{10} \pmod{100}$

$$ \begin{align} 2014^{2014} & \equiv (24^{10})^{10} \times 16 \pmod{100} \\ \\  & \equiv (76)^{10} \times 16 \pmod{100}  \end{align} $$

Similarly $76^{10} = 4^{10} \times 19^{10} \equiv 76 \times 1 \pmod {100}$, and so

$$ \begin{align} 2014^{2014} & \equiv76 \times 1 \times 16 \pmod{100} \\ \\  & \equiv 1216 \pmod{100}  \\ \\ & \equiv 16 \pmod{100} \end{align} $$

And so the last two digits of $2014^{2014}$ are 16.