Tuesday, 4 November 2025

Exercise (2.4).19

Prove Proposition (2.23).


Proposition (2.23) is

Let $a_1, a_2, a_3, \ldots , a_n$ be non-zero integers, then $[a_1, a_2, a_3, \ldots , a_{n−1}, a_n] = [[a_1, a_2, a_3, \ldots , a_{n−1}] , a_n]$.


We'll use abbreviations $A$ and $B$

$$\begin{align} A & = a_1, a_2, a_3, \ldots , a_{n−1}, a_n \\ \\  B & = a_1, a_2, a_3, \ldots , a_{n−1}\end{align} $$

We need to show

$$ [A] = [[B], a_n] $$


Let the prime decomposition of $a_1$ be

$$ p_1^{\alpha(a_1)_1} \times p_2^{\alpha(a_1)_2} \times \ldots $$

Let the prime decomposition of $a_2$ be

$$ p_1^{\alpha(a_2)_1} \times p_2^{\alpha(a_2)_2} \times \ldots $$

And the prime decomposition of $a_n$ be

$$ p_1^{\alpha(a_n)_1} \times p_2^{\alpha(a_n)_2} \times \ldots $$


The LCM $[B]$ is therefore

$$ p_1^{\max(\alpha(a_1)_1, \alpha(a_2)_1, \alpha(a_3)_1, \ldots , \alpha(a_{n-1})_1} $$

$$\times $$

$$ p_2^{\max(\alpha(a_1)_2, \alpha(a_2)_2, \alpha(a_3)_2, \ldots , \alpha(a_{n-1})_2}$$

$$ \times $$

$$ \ldots $$


The LCM $[[B], a_n]$ is

$$ p_1^{\max(\alpha(a_1)_1, \alpha(a_2)_1, \alpha(a_3)_1, \ldots , \alpha(a_{n-1})_1, \textcolor{red}{\alpha(a_n)_1}} $$

$$\times $$

$$ p_2^{\max(\alpha(a_1)_2, \alpha(a_2)_2, \alpha(a_3)_2, \ldots , \alpha(a_{n-1})_2, \textcolor{red}{\alpha(a_n)_1}}$$

$$ \times $$

$$ \ldots $$

This is the LCM $[A]$.


Thus we have shown $ [A] = [[B], a_n] $ by showing the prime decompositions are the same.