Sunday, 2 November 2025

Exercise (2.4).11

Disprove the following statements for positive integers $a$, $b$, and $c$:

(a) $[p, p] = p^2$ where $p$ is prime.

(b) $[a, b] = a × b$

(c) If $[a, b] = n$ and $[b, c] = m$ then $[a, c] = m × n$.

(d) $[a + b, c] = [a, c] + [b, c]$

(e) $[ab, ac] = a^2 [b, c]$

(f) $\gcd (a, b, c) × [a, b, c] = a × b × c$


We disprove all the statements with counter-examples.


(a) Choosing $p=2$

$ [2,2] = 2 \ne 4 = 2^2 $


(b) Choosing $a=2, b=4$

$ [2,4] = 4 \ne 8 = 2 \times 4 $


(c) Choosing $a=1, b=2, c=1$

$n = [1,2] = 2$

$m = [2,1] = 2$

$[1,1]=1 \ne 4 = 2 \times 2$


(d) Choosing $a=1, b=2, c=3$

$[1+2,3] = 3 \ne 9 = 3 + 6= [1,3] + [2,3]$


(e) Choosing $a=2, b=1, c=1 $

$ [2, 2] = 2 \ne 4 = 2^2 \times [1,1]  $


(f) Choosing $a=2, b=2, c=2$

$\gcd(2, 2, 2) \times [2,2,2] = 2 \times 2 = 4 \ne 8 = 2 \times 2 \times 2$