Sunday, 2 November 2025

Exercise (2.4).1

Determine the LCM of the following pairs of integers:

(a) [45, 81]

(b) [2000, 2015]

(c) [1000, 1001]


(a) We use the prime decompositions of 45 and 81.

$45 = 3^2 \times 5^1$

$81 = 3^4$

So the LCM $[45,81] = 3^4 \times 5^1 = 405$.


(b) We use the prime decompositions of 2000 and 2015.

$2000 = 2^4 \times 5^3$

$2015 = 5^1 \times 13^1 \times 31^1$

So the LCM $[2000, 2015] = 2^4 \times 5^3 \times 13^1 \times 31^1 = 806000$.


(c) We use the prime decompositions of 1000 and 1001.

$1000 = 2^3 \times 5^3$

$1001 = 7^1 \times 11^1 \times 13^1$

So the LCM $[1000,10001] = 2^3 \times 5^3 \times 7^1 \times 11^1 \times 13^1 = 1001000$.