Sunday, 16 November 2025

Exercise (1.3).29

Prove the following by induction:

$$ 2^{2n+1} ≡ 9n^2− 3n + 2 \pmod {54} $$

where $n$ is a natural number.


Let $P(n)$ be the statement

$$ 2^{2n+1} ≡ 9n^2− 3n + 2 \pmod {54} $$

We need to prove the base case $P(0)$ and the inductive step $P(n) \implies P(n+1)$.


Base Case

The base case is $P(0)$ which is

$$ 2^{2(0)+1} ≡ 9(0)^2− 3(0) + 2 \pmod {54} $$

This reduces to $2 \equiv 2 \pmod {54}$, which is true.


Inductive Step

To prove $P(n) \implies P(n+1)$ we assume the induction hypothesis $P(n)$ and aim to show $P(n+1)$, which is 

$$\begin{align} 2^{2(n+1)+1} & \equiv 9(n+1)^2− 3(n+1) + 2 \pmod {54} \\ \\ 2^{2n + 3} & \equiv 9 n^2 + 15 n + 8 \end{align}$$

Let's start with the $2^{2n + 3}$

$$\begin{align} 2^{2n + 3} & = 2^{2n + 1} \times 2^2 \\ \\ & \equiv (9n^2− 3n + 2)  \times 4 \pmod {54} \quad \text{by the induction hypothesis}  \\ \\ & \equiv  36 n^2 - 12 n + 8 \pmod{54} \\ \\ & \equiv 9 n^2 + 15 n + 8 + 27n(n - 1)  \pmod {54}  \\ \\ & \equiv 9 n^2 + 15 n + 8 + 54m  \pmod {54} \quad \text{since }n(n-1)=2m \text{ for some }m \\ \\ & \equiv  9 n^2 + 15 n + 8  \pmod {54}  \quad \text{since } 5m \equiv 0  \end{align}$$

And so we have shown the inductive step is true.


By induction we have shown that $ 2^{2n+1} ≡ 9n^2− 3n + 2 \pmod {54} $ is true for all natural $n$.