Thursday, 23 October 2025

Exercise (1.4).3

Solve the following Diophantine equations for general solutions, if possible:

(a) $101x + 600y= 1001$

(b) $181x + 232y= −100$


(a) Here $\gcd(101, 600) = 1$, which divides 1001. This means the equation has integer solutions.

Because the coefficients are large, we won't use trial and error to find a solution. We'll use Euclid's Algorithm.

$ 600 = 5(101) + 95 $

$ 101 = 1(95) + 6 $

$ 95 = 15(6) + 5 $

$ 6 = 1(5) + 1 $

$ 5 = 5(1) + 0$

Re-arranging

$ 1 = 6 -5 $

$ 1 = 6 - (95 - 15(6)) = -95 + 16(6)$

$ 1 = -95 + 16(101 - 95) $

$ 1 = -17(95) +16(101) $

$ 1 = -17(600 - 5(101)) +16(101) $

$ 1 = -17(600) + 101(101) $

So a solution of $101x + 600y =1$ is $x=101, y=-17$.

Multiplying through by 1001, gives us  $101(101\times 1001) + 600(-17 \times 1001) =1001$.

This means a solution of $101x + 600y= 1001$ is

$$x_0=101101, \quad y_0=-17017$$

A general solution is

$$ x = 101101  + 600t, \quad y = -17017 - 101t$$

for any integer $t$.


(b) Here $\gcd(181,232)=1$, which divides -100. This means the equation has integer solutions.

Because the coefficients are large, we won't use trial and error to find a solution. We'll use Euclid's Algorithm.

$ 232 = 1(181) + 51 $

$ 181 = 3(51) + 28 $

$ 51 = 1(28) + 23 $

$ 28 = 1(23) + 5 $

$ 23 = 4(5) + 3 $

$ 5 = 1(3) + 2 $

$ 3 = 1(2) + 1 $

$ 2 = 2(1) + 0 $

Re-arranging

$1 = 3 - 2 = (23 - 4(5)) - (5 - 3)$

$ 1= 23 - 5(5) + 3 = 23 - 5(5) + (23 - 4(5))  = 2(23) - 9(5)$

$ 1 = 2(23) - 9(28-23) = 11(23) -9(28) = 11(51 - 28) - 9(28) = 11(51) -20(28) $

$ 1 = 11(232 - 181) - 20(181 -3(51))  = 11(232) -31(181) + 60(51)$

$ 1 = 11(232) -31(181) + 60(232-181) = 71(232) - 91(181) $

So a solution of $181x + 232y= 1$ is $x=-91, y = 71$.

Multiplying through by -100, gives us $181(-91 \times -100) + 232(71 \times -100) = -100$.

This means a solution of $181x + 232y= −100$ is

$$ x_0 = 9100, \quad y_0 = -7100 $$

A general solution is

$$ x = 9100 + 232t, \quad y = -7100 - 181t$$

for any integer $t$.