Monday, 20 October 2025

Exercise (1.3).12

(i) Prove that if $a \mid c$ and $b \mid c$ and $\gcd (a, b) = 1$ then $(a \times b) \mid c$.

(ii) Prove that if $a_1 \mid c, a_2 \mid c, \ldots , a_n \mid c$ and $\gcd (a_j, a_i) = 1$ where $i \neq j$ then

$$(a_1 \times a_2 \times  \ldots  \times  a_n) \mid  c$$


(i) We're given $a \mid c$ and $b \mid c$, which means for some integers $j,k$

$$\begin{align} c &= ja \\ \\ c &= kb \end{align}$$

We're also given $\gcd(a,b) = 1$. By Bezout's Indentity,  there are integers $x,y$ such that 

$$ ax + by = 1 $$

Multiplying by $c$, 

$$ ax(kb) + by(aj) = c $$

Factorising,

$$ab(xk + yj) = c$$

And so we conclude $(a \times b) \mid c$


(ii) We'll prove this by induction on $n$.

Let's take the statement $P(n)$ to mean:

If $a_1 \mid c, a_2 \mid c, \ldots , a_n \mid c$ and $\gcd (a_j, a_i) = 1$ where $i \neq j$ then $(a_1 \times a_2 \times  \ldots  \times  a_n) \mid  c$.

We need to prove a base case and an induction step.


Base Case

The base case $P(2)$ is

If $a_1 \mid c, a_2 \mid c$ and $\gcd (a_1, a_2) = 1$ where $1 \neq 2$ then $(a_1 \times a_2) \mid  c$.

We proved this base case in exercise (i) above.


Induction Step

We need to show $P(n) \implies P(n+1)$.

We assume $P(n)$ as the induction hypothesis.

The statement $P(n+1)$ means:

If $a_1 \mid c, a_2 \mid c, \ldots , a_n \mid c, a_{n+1}\mid c$ and $\gcd (a_j, a_i) = 1$ where $i \neq j$ then $(a_1 \times a_2 \times  \ldots  \times  a_n \times a_{n+1}) \mid  c$.

The assumption for $P(n+1)$ that $a_1 \mid c, a_2 \mid c, \ldots , a_n \mid c, a_{n+1}\mid c$ where all $a_j, a_{i \ne j}$ are coprime, includes the assumption for $P(n)$ that  $a_1 \mid c, a_2 \mid c, \ldots , a_n \mid c$ where all $a_j, a_{i \ne j}$ are coprime. That means we have $(a_1 \times a_2 \times  \ldots  \times  a_n) \mid  c$.

That is, there exists some integer $p$ such that

$$(a_1 \times a_2 \times  \ldots  \times  a_n) p=  c$$

The additional assumption of $P(n+1)$ is that $a_{n+1} \mid c$, so there exists some integer $q$ such that

$$ a_{n+1}q = c$$

Since $a_{n+1}$ is coprime to all $a_1, a_2, \ldots, a_n$, by Bezout's identity we have, for some integers $r,s$

$$ (a_1 \times a_2 \times  \ldots  \times  a_n) r + a_{n+1} s = 1 $$

Multiplying by $c$

$$ (a_1 \times a_2 \times  \ldots  \times  a_n) ra_{n+1}q + a_{n+1} s(a_1 \times a_2 \times  \ldots  \times  a_n)p = c $$

Factorising

$$ (a_1 \times a_2 \times  \ldots  \times  a_n \times a_{n+1}) (rq + sp) = c $$

So we have $(a_1 \times a_2 \times  \ldots  \times  a_n \times a_{n+1})  \mid c$.

We have shown $P(n) \implies P(n+1)$.


By showing the base case and the induction step, we have shown by induction that if $a_1 \mid c, a_2 \mid c$ and $\gcd (a_1, a_2) = 1$ where $1 \neq 2$ then $(a_1 \times a_2) \mid  c$.