Monday, 20 October 2025

Exercise (1.3).1

By using the Euclidean Algorithm determine:

(a) $\gcd (156, 18)$

(b) $\gcd (129, 1011)$

(c) $\gcd (703, 111)$

(d) $\gcd (181, 232)$


(a) Applying the Division Algorithm to 156 and 18 gives

$$ 156 = 8 (18) + 12 $$

We apply the Division Algorithm to 18 and the non-zero remainder 12.

$$ 18 =  1(12) + 6 $$

We apply the Division Algorithm to 12 and the non-zero remainder 6.

$$ 12 =  2(6) + 0 $$

The algorithm terminates. The last non-zero remainder is 6, so $\gcd(156,18)=6$.


(b) Applying the Division Algorithm to 1011 and 129 gives

$$ 1011 = 7(129) + 108 $$

We apply the Division Algorithm to 129 and 108.

$$ 129 = 1(108) + 21 $$

We apply the Division Algorithm to 108 and 21.

$$ 108 = 5(21) + 3 $$

We apply the Division Algorithm to 21 and 3.

$$ 21 = 7(3) + 0 $$

The last non-zero remainder is 3, so $\gcd(1011,129) = 3$


(c) We apply the Division Algorithm to 703 and 111.

$$ 703 =  6(111) + 37$$

$$ 111 = 3(37) + 0 $$

So $\gcd(703,111) = 37$


(d) We apply the Division Algorithm to 232 and 181.

$$ 232 = 1(181) + 51 $$

$$ 181 = 3(51) + 28 $$

$$ 51 = 1(28) + 23 $$

$$ 28 = 1(23) + 5 $$

$$ 23 = 4(5) + 3 $$

$$ 5 = 1(3) + 2 $$

$$ 3 = 1(2) + 1 $$

$$ 2 = 1(2) + 0 $$

So $\gcd(232,181) = 1$. They are coprime.