Tuesday, 14 October 2025

Exercise (1.1).11

Determine $\gcd (a + b, a^2− b^2)$ where integers $a + b$ and $a^2− b^2$ are not both zero.


We can rewrite $a^2 - b^2$ as $(a+b)(a-b)$. So $a+b$ is a factor of $a^2 - b^2$.

In case $a+b$ is negative, we can ensure positivity by taking the modulus $\lvert a+b \rvert$.

So 

$$ \gcd \; (\; a + b \; ,  \; a^2− b^2 \;) = \lvert a+b \rvert$$